

Protected TAVR

Didier Tchétché.

Clinique Pasteur, Toulouse, France

Disclosure:

-Consultant for

Abbott/Boston Sci/Edwards/Medtronic/HighLife/ T-Heart/Caranx Medical

What do we know

At least 50% of stroke after TAVI are periprocedural

Disabling stroke impacts hospital stay, quality of life and survival

Risk creep related to the decrease of stroke rates

75-99% of debris captured in filter-based CEP post TAVI

Inconclusive data about the clinical impact of CEP

SENTINEL Cerebral Embolic Protection Device

- Two independent filters capture & remove embolic material
- Polyurethane filter, pore size = 140 μm
- Standard right trans-radial sheath access (6F)
 - One size accommodates most vessel sizes; fits ~90% of anatomies
- Deflectable compound-curve catheter facilitates cannulation of LCC
- Minimal profile in aortic arch (little interaction with other devices)

- 3 out of the 4 cerebral vessels are protected (left vertebral artery circulation is unprotected)

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Cerebral Embolic Protection during Transcatheter Aortic-Valve Replacement

Samir R. Kapadia, M.D., Raj Makkar, M.D., Martin Leon, M.D., Mohamed Abdel-Wahab, M.D., Thomas Waggoner, D.O., Steffen Massberg, M.D., Wolfgang Rottbauer, M.D., Ph.D., Samuel Horr, M.D., Lars Sondergaard, M.D., Juhana Karha, M.D., Robert Gooley, M.B., B.S., Ph.D., Lowell Satler, M.D., Robert C. Stoler, M.D., Steven R. Messé, M.D., Suzanne J. Baron, M.D., Julia Seeger, M.D., Susheel Kodali, M.D., Amar Krishnaswamy, M.D., Vinod H. Thourani, M.D., Katherine Harrington, M.D., Stuart Pocock, Ph.D., Rodrigo Modolo, M.D., Ph.D., Dominic Allocco, M.D., Ian Meredith, M.D., Ph.D., and Axel Linke, M.D., for the PROTECTED TAVR Investigators*

PROTECTED TAVR Study

OBJECTIVE

To study whether clinical stroke in transfemoral TAVR is reduced with CEP, across all risk groups and all commercially available devices

DESIGN

Prospective, post-market, multicenter randomized controlled trial at 51 centers in North America, Europe, and Australia

PROTECTED TAVR Study Design

mRS, Modified Rankin Scale; NIHSS, National Institutes of Health Stroke Scale; MoCA, Montreal Cognitive Assessment; CAM-ICU, Confusion Assessment Method for Intensive Care Unit Patients

Baseline Demographics

	Control (N=1499)	CEP (N=1501)
Age (years)	78.9±7.8	78.9±8.0
Female Sex	37.8%	42.0%
Society of Thoracic Surgeons score, %	3.4±2.8	3.3±2.7
STS score <3%	58.2%	55.6%
Surgical Risk (per Heart Team)		
Extreme/High Risk	30.4%	30.4%
Intermediate Risk	34.2%	33.2%
Low risk	35.4%	36.3%
Native Valve Calcification Severity (site-reported)		
None/Mild	15.2%	16.2%
Moderate	29.5%	29.4%
Severe/Extreme	55.3%	54.4%
CHA ₂ DS ₂ -VASC score	4.2±1.3	4.2±1.3

Procedural Characteristics

	Control	CEP	
	(N=1499)	(N=1501)	
Anesthesia			
General Anesthesia	26.4% 26.8%		
Local or Conscious Sedation	73.6% 73.2%		
Valve Anatomy			
Tricuspid Valve	89.5%	87.5%	
Bicuspid Valve	8.1%	8.7%	
Bio-prosthesis	2.5%	3.7%	
Prosthetic Valve Type			
Balloon Expandable Valve	63.7%	64.3%	
Non-Balloon Expandable Valve	36.3%	35.7%	
Balloon Dilatation			
Pre-dilatation	41.9%	38.5%	
Post-dilatation	25.7%	26.2%	

Primary Endpoint: All Stroke at 72h / Discharge

Clinical Outcomes at 72h / Discharge

Event at ≤72h / Discharge ITT population	Control (N=1499)	CEP (N=1501)	
All-cause Mortality	0.3% (4)	0.5% (8)	
Cardiovascular Mortality	0.3% (4)	0.5% (8)	
Safety composite (all-cause mortality and stroke)	3.0% (45)	2.7% (41)	
CEP Access Site-related Vascular Complication (Major or Minor)	N/A	0.1% (1)	
Acute Kidney Injury (stage 2 or 3)	0.5% (7)	0.5% (8)	

Note: A per-protocol analysis for the primary endpoint and other outcomes yielded similar results to those in the ITT population.

Subgroup Analyses

		All Stroke	Disabling Stroke
Category	Subgroup	Difference [95% CI]	Difference _l [95% CI]
	All patients		
A a a	≥80 y	ii	⊢ _
Age	<80 y	⊢ −−− −−↓	*
Gender	Male	_	⊢- ● - <mark>-</mark> -1
	Female	⊢	*
Operative Risk	STS ≥3	·•i	*
(STS score)	STS <3	⊢ ● _	⊢ ●{
Operative Risk	Low	↓	⊢ −− ₽−1
(per Heart Team)	> Low	⊢	
Valve Morphology	Tricuspid		*
	Bicuspid	► ►	
Aortic Valve Calcification	None/Mild		
	≥ Moderate	↓•i	*
History of CAD	Yes	⊢ ⊢	⊢ 4
	No	·i	⊢
History of PVD	Yes		*
	No	⊢ ⊢ i	⊢ ●⊣
Prior Cerebrovascular Event	Yes	▲ ● ►	
	No	→_	*
Valve-in-Valve	Yes		•
	No	⊢	*
Valve Type:	Yes	·•	⊢ •—I
Balloon-expandable	No	• • • • • • • • • • • • • • • • • • •	
Pre-dilatation	Yes	·	
	No	└── ● ─┤	*
Post-dilatation	Yes	·	·
	No	+	*
Geographical Region	US	• * · · · · · · · · · · · · · · · · · ·	*
	OUS		
		-4,0 -2,0 0,0 2,0 4,0	-4,0 -2,0 0,0 2,0 4,0
		CEP better Control better	CEP better Control better

CD

Conclusions

• Use of Sentinel CEP was feasible in 94.4% of attempted patients and was safe, with no major complications

- Use of CEP did not reduce overall periprocedural stroke
- Fewer disabling strokes were observed with CEP, but non-significant
- No specific subgroups were identified which strongly favored CEP use for overall stroke reduction

Limitations

- Trial design was practical in order to facilitate enrollment and data collection
 - As a consequence, the study was restricted to a small number of endpoints with only short-term follow-up
- The study was not powered to detect a treatment difference for disabling stroke

CEP Reduce Lesion Number And Volume (by MRI)

Total Lesion Number and Total Lesion Volume

Haussig S, ... Linke A. JAMA. 2016(6):592-601.

Sentinel Cerebral Protection System

Sentinel IDE Trial: 363 patients randomized 2:1 to TAVR with or without CEP

¹Kapadia SK, et al. J Am Coll Cardiol 2017;69:367–77. ²Seeger J, et al, Euro Heart J, 2019 May 1;40(17):1334-1340.

Is Protected-TAVR likely to change my practice?

- No systematic use
- CPDs are safe and might have the potential to reduce major strokes.
- Need for properly powered studies
- Use in highly selected patients
- Cost is an issue

MERCI THANK YOU DANKE どうもありがとう **GRACIAS** 谢谢 **OBRIGADO** GRAZIE **BEDANKT** DEKUJI Спасибо **EFHARISTO**

